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Abstract

This paper gives a comparative study of the K-means algorithm and the mixture model (MM) method for clustering normal7
data. The EM algorithm is used to compute the maximum likelihood estimators (MLEs) of the parameters of the MM model.
These parameters include mixing proportions, which may be thought of as the prior probabilities of different clusters; the maximum9
posterior (Bayes) rule is used for clustering. Hence, asymptotically the MM method approaches the Bayes rule for known parameters,
which is optimal in terms of minimizing the expected misclassification rate (EMCR).11

The paper gives a thorough analytic comparison of the two methods for the univariate case under both homoscedasticity and
heteroscedasticity. Simulation results are given to compare the two methods for a range of sample sizes. The comparison, which13
is limited to two clusters, shows that the MM method has substantially lower EMCR particularly when the mixing proportions are
unbalanced. The two methods have asymptotically the same EMCR under homoscedasticity (resp., heteroscedasticity) when the15
mixing proportions of the two clusters are equal (resp., not too unequal), but for small samples the MM method sometimes performs
slightly worse because of the errors in estimating unknown parameters.17
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The K-means algorithm (MacQueen, 1967) is one of the most popular methods for clustering multivariate quantitative23
data. This algorithm is non-parametric in nature as it does not assume any probability model for the data. Given a fixed
number of clusters, it determines an assignment of the data vectors (observations) to the clusters so as to minimize the25
total of the squared distances between the observations assigned to the same cluster and summed over all clusters. See
Everitt (1993) for a review of clustering methods.27

The mixture model (MM) method provides a parametric approach to the clustering problem. The EM algorithm
(Dempster et al., 1977) is a natural method for obtaining the maximum likelihood estimators (MLEs) of the unknown29
parameters of the MM. The parameters include the mixing proportions or the prior probabilities of the clusters since the
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true cluster memberships of the observations are unobserved. Clustering is done by applying the maximum posterior1
(Bayes) rule.

The K-means algorithm makes “hard” (deterministic) assignments of the observations to the clusters, i.e., each3
observation is assigned to exactly one cluster. On the other hand, the MM method computes posterior probabilities
(called responsibilities) of belonging to different clusters for individual observations. Hastie et al. (2002, p. 463) note5
that the MM method is a “soft” version of the K-means algorithm in that if the data from each cluster is assumed to be
multivariate normal (MVN) with the mean vector depending on the cluster and a common covariance matrix �2I, then7
as �2 → 0, the MM method based on the EM algorithm converges to the K-means algorithm. Thus, as in the K-means
algorithm, asymptotically the MM method assigns each observation to that cluster whose estimated mean is closest to9
the observation.

Although there is asymptotic convergence of the MM method and the K-means algorithm, it is under very restrictive11
conditions of homoscedasticity not only among the clusters, but also among the measured variables. More crucially,
it assumes independence among the variables. These assumptions underlie the K-means algorithm, which ignores13
correlations and heteroscedasticity among the variables by using the simple Euclidean distance measure. Therefore,
it is of interest to compare the performances of the two methods under the practical conditions of small samples,15
correlated responses and heteroscedasticity. In this paper we initiate this study by focusing on the univariate case for
K = 2 under homoscedasticity and heteroscedasticity. The MVN case, which allows the study of how correlations17
between measured variables affect the performance of the competing algorithms, will be considered in a future paper.
Surprisingly, even the univariate case has not been studied in this context to the best of our knowledge.19

The outline of the paper is as follows. In Section 2 we formulate the problem and define the notation. In Section
3 we review the K-means algorithm and the MM method with the associated EM algorithm. The discussions in both21
sections are framed in the general setting of MVN data, but in the remainder of the paper we focus exclusively on
univariate normal data. In Section 4 we give analytical results for comparing the two methods in the homoscedastic23
case. In Section 5 we extend these results to the heteroscedastic case. In Section 6 we present simulation results on
misclassification rates of the two methods. Finally, Section 7 gives a discussion and conclusions.25

2. Problem formulation and notation

Suppose that there are N subjects on each of whom m variables are measured resulting in observations xi =27
(xi1, xi2, . . . , xim)′ (1� i�N). The goal of clustering is to group these N subjects into K < N clusters, Ck (1�k�K),
so that similar subjects are grouped into the same cluster and dissimilar subjects are grouped into different clusters. We29
will assume that K is the true known number of clusters and is fixed. (In practice, of course, K is not known. The problem
of determining the optimal K will not be addressed here.) Let Nk denote the true number of subjects belonging to cluster31
Ck where

∑K
k=1Nk =N . A clustering rule (denoted by R) is a many-to-one mapping, R(xi )=Ck (1� i�N, 1�k�K).

We will assume that the observations xi are mutually independent and the observations from different clusters have33
MVN distributions with different mean vectors; the covariance matrices may be equal (homoscedastic) or unequal
(heteroscedastic). Specifically, if subject i belongs to cluster Ck (denoted by i ∈ Ck) then35

Xi |i ∈ Ck ∼ MVN(μk, �k), (2.1)

where Xi denotes the random variable (r.v.) corresponding to the observation xi , and μk and �k denote the mean vector37
and covariance matrix of the MVN distribution for cluster Ck .

3. Review of two clustering methods39

3.1. K-means algorithm

The K-means algorithm uses the Euclidean squared distance measure:41

d(xi , xi′) = ‖xi − xi′ ‖2 =
m∑

j=1

(xij − xi′j )
2,
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which implies homoscedastic independent measurements. The algorithm aims to minimize the within-cluster scatter1
given by

1

2

K∑
k=1

∑
R(xi )=Ck

∑
R(xi′ )=Ck

‖xi − xi′ ‖2 =
K∑

k=1

∑
R(xi )=Ck

‖xi − xk‖2,
3

where xk = (xk1, xk2, . . . , xkm)′ is the vector of sample means of the observations assigned to cluster Ck . Since xk

minimizes
∑

i∈Ck
‖xi −μk‖2 with respect to μk , the K-means algorithm actually aims to minimize the overall objective5

function,

K∑
k=1

∑
R(xi )=Ck

‖xi − μk‖2, (3.1)
7

with respect to the classification rule R and the true cluster means μk (1�k�K). Beginning with an initial assignment
of observations to the clusters and the corresponding sample cluster means xk , the K-means algorithm iterates through9
the following two steps until convergence.

Step 1: Reassign each observation to the cluster whose mean xk is closest to that observation. Thus,11

R(xi ) = Ck ⇐⇒ k = argmin
1���K

‖xi − x�‖2.

Step 2: Calculate the new cluster means xk .13
Note that this algorithm does not guarantee the global minimum of the objective function (3.1). It also does not take

into account any prior knowledge about the mixing proportions. Thus, the K-means algorithm is a purely computational15
algorithm with no probabilistic basis.

3.2. MM method17

Consider the following MM: denote the MVN density function of Xi conditional on i ∈ Ck by

fk(xi; �k) = (2�)−m/2|�k|−1/2 exp{− 1
2 (xi − μk)

′�−1
k (xi − μk)},19

where �k = (μk, �k) (note that we are not using �k as a vector). Let �k = Pr(i ∈ Ck) be the prior probability (mixing
proportion) that a subject i belongs to cluster Ck with

∑K
k=1�k = 1. Then the unconditional distribution of Xi is21

f (xi; �, �) =
K∑

k=1

�kfk(xi; �k),

where � represents the collection of �1, �2, . . . , �K and � = (�1, �2, . . . , �K)′.23
The log-likelihood function for the MM is given by

ln L(�, �) =
N∑

i=1

ln

[
K∑

k=1

�kfk(xi; �k)

]
. (3.2)

25

The data are “incomplete” since the cluster memberships of the subjects are unobserved. Therefore, (3.2) is referred
to as the incomplete log-likelihood function. The “complete” data vector is denoted by (xi , zi ) (with (Xi , Zi ) as the27
corresponding random vector), where zi = (zi1, zi2, . . . , ziK) is a binary vector with zik = 1 and zi� = 0 for � 
= k if
i ∈ Ck . If zi is observed then the complete log-likelihood function is given by29

ln L(�) =
N∑

i=1

K∑
k=1

zik ln fk(xi; �k). (3.3)

The EM algorithm is used to maximize the incomplete log-likelihood function (3.2) through maximization of the31
complete log-likelihood function (3.3). Since the zik are unobserved, they are replaced by the current estimates of their
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expected values, which are the responsibilities. Upon initialization, the EM algorithm iterates through the following1
two steps until convergence.

Step 1 (Expectation): Given the current estimates �̂k = (μ̂k, �̂k) (1�k�K) and �̂, calculate the expected values of3
the sufficient statistics for the unobserved r.v.s Zik , which are the estimates of the posterior probabilities, Pr(i ∈ Ck|xi ),
by applying the Bayes rule:5

ẑik = E[Zik |̂�, �̂] = Pr[Zik = 1|̂�, �̂] = �̂kfk(xi; �̂k)∑K
�=1̂��f�(xi; �̂�)

. (3.4)

Step 2 (Maximization): Find the new estimates �̂k of �k (1�k�K) by maximizing the complete log-likelihood7
function (3.3). These estimates, �̂k = (μ̂k, �̂k), are given by (see McLachlan and Krishnan, 1997, p. 71)

μ̂k =
∑N

i=1̂zikxi∑N
i=1̂zik

(1�k�K)
9

and

�̂k =
∑N

i=1̂zik(xi − μ̂k)(xi − μ̂k)
′∑N

i=1̂zik

(1�k�K).
11

If homoscedasticity is assumed then compute a pooled estimate of common �:

�̂ =
∑K

k=1
∑N

i=1̂zik(xi − μ̂k)(xi − μ̂k)
′

N
.13

Finally compute the new estimate of �k:

�̂k = 1

N

N∑
i=1

ẑik (1�k�K).
15

The final estimates of the posterior probabilities, ẑik , are used to assign the observations to clusters according to the
maximum posterior rule:17

R(xi ) = Ck ⇐⇒ ẑik � ẑi� ∀� 
= k.

As Nk → ∞∀k, this rule approaches the Bayes rule for known parameters:19

R(xi ) = Ck ⇐⇒ �kfk(xi; �k)���f�(xi; ��) ∀� 
= k. (3.5)

The misclassification rate (MCR), which is the proportion of misclassified observations, is generally used as the21
performance measure of any classification/clustering rule. Anderson (1958, Section 6.6) has shown that the Bayes rule
minimizes the expected misclassification rate (EMCR) defined by23

EMCR =
K∑

k=1

�k Pr{R(xi ) 
= Ck|i ∈ Ck} = 1 −
K∑

k=1

�k Pr{R(xi ) = Ck|i ∈ Ck}. (3.6)

Therefore, the value of EMCR for the Bayes rule provides a lower bound on the EMCR for any other classification25
rule. We refer to this lower bound as the “gold standard.” The maximum posterior rule (3.5) achieves this lower bound
asymptotically (as Nk → ∞∀k) since the two rules then coincide.27

Under the general MVN assumption, the Bayes rule classifies an observation x using the following rule:

R(x) = Ck ⇐⇒ 1

2
[(x − μk)

′�−1
k (x − μk) − (x − μ�)

′�−1
� (x − μ�)]� ln

(
�k|��|1/2

��|�k|1/2

)
∀� 
= k. (3.7)

29

This rule is quadratic in x. Under homoscedasticity, �1 = · · · = �K = �, the rule becomes linear:

R(x) = Ck ⇐⇒ (μk − μ�)
′�−1x� 1

2
[μ′

k�
−1μk − μ′

��
−1μ�] − ln

(
�k

��

)
∀� 
= k. (3.8)

31
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An expression for the EMCR of this linear Bayes rule can be derived as follows. Denote Yk� = (μk − μ�)
′�−1X,1

where X ∼ N(μk, �). Then Yk� ∼ N(�k�, �
2
k�), where

�k� = (μk − μ�)
′�−1μk and �2

k� = (μk − μ�)
′�−1(μk − μ�).3

For notational convenience, denote

dk� = 1

2
[μ′

k�
−1μk − μ′

��
−1μ�] − ln

(
�k

��

)
.

5

Then from (3.6) we have

EMCR = 1 −
K∑

k=1

�k Pr(Yk� > dk�∀� 
= k)

= 1 −
K∑

k=1

�k Pr

(
Zk� >

dk� − �k�

�k�

∀� 
= k

)
, (3.9)

7

where the Zk� for � 
= k are N(0, 1) r.v.s with

Corr(Zk�, Zk�′) = (μk − μ�)
′�−1(μk − μ�′)

�k��k�′
(� 
= �′ 
= k).9

This MVN probability can be evaluated given the values of all the parameters. As noted in the Introduction, the
multivariate case will be studied in a future paper.11

4. Univariate normal homoscedastic mixtures with two clusters

We now specialize to the univariate (m = 1) case with K = 2 clusters. Denote the cluster distributions by N(�1, �
2)13

and N(�2, �
2) and assume that �1 < �2. Let �1 = � and �2 = 1 − � be the mixing proportions. For this simple setting

both the K-means algorithm and the MM method are defined by single thresholds, c and d, respectively, such that an15
observation x is classified to cluster C2 if x exceeds the threshold and to cluster C1 if x is less than the threshold. The
MM method based on the EM algorithm approaches the Bayes rule asymptotically (as Nk → ∞∀k). In this section we17
will compare asymptotic EMCRs (which, for conveniences will be referred to simply as EMCRs) of the MM method
and the K-means algorithm.19

4.1. EMCR of the MM method

Asymptotically, the MM method clustering rule is equivalent to the Bayes rule (3.8):21

R(x) = C2 ⇐⇒ x�d = � + �

�
ln

(
�

1 − �

)
, (4.1)

where �= (�1 +�2)/2 and �= (�2 −�1)/� > 0. Note that d is an increasing and skew-symmetric function of � around23
�= 1

2 where d =�, i.e., if d and d ′ correspond to � and �′ =1−� then d ′ = (�1 +�2)−d. Fig. 1 shows d as a function of
� for mixtures of N(1, 1) and N(3, 1) distributions. For comparison purposes, the threshold c of the K-means algorithm25
(studied analytically in the following subsection) is also plotted in the same figure. We see that the curves for c and d
vary in opposite ways and cross at � = 1

2 where c = d = �.27
The EMCR given by (3.9) simplifies to

EMCR = � Pr�1,�(X > d) + (1 − �) Pr�2,�(X�d)

= �	

(
�1 − d

�

)
+ (1 − �)	

(
d − �2

�

)
. (4.2)29

When � = 0, d = −∞ and when � = 1, d = +∞; in both cases, EMCR = 0. Additionally, when � = 1
2 , d = � and

EMCR = 	(−�/2). The following proposition gives a more detailed characterization of the EMCR.31
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Fig. 1. Asymptotic thresholds c of the K-means algorithm and d of the MM method for mixtures of N(1, 1) and N(3, 1) distributions.

Proposition 1. The EMCR of the MM method is symmetric in � around 1
2 and is increasing for � < 1

2 and decreasing1
for � > 1

2 .

Proof. Let d and d ′ be the asymptotic threshold values of the MM method for the priors � and �′ = 1 − �, respectively.3
As noted above, d ′ = (�1 + �2) − d . Let EMCR and EMCR′ be the corresponding EMCRs. Then

EMCR′ = �′	
(

�1 − d ′

�

)
+ (1 − �′)	

(
d ′ − �2

�

)
= (1 − �)	

(
d − �2

�

)
+ �	

(
�1 − d

�

)
= EMCR.5

To show that the EMCR is increasing for � < 1
2 , consider the Bayes rules for the priors � and �′ = � + �� where

�� > 0 and �, �′ < 1
2 . Denote by d and d ′ the threshold values for � and �′, respectively, and the corresponding EMCRs7

by EMCR and EMCR′. Then from (4.2) we have

EMCR′ − EMCR =
[
(� + ��)	

(
�1 − d ′

�

)
+ (1 − � − ��)	

(
d ′ − �2

�

)]
−
[
�	

(
�1 − d

�

)
+ (1 − �)	

(
d − �2

�

)]
=
[
�	

(
�1 − d ′

�

)
+ (1 − �)	

(
d ′ − �2

�

)]
−
[
�	

(
�1 − d

�

)
+ (1 − �)	

(
d − �2

�

)]
+ ��

[
	

(
�1 − d ′

�

)
− 	

(
d ′ − �2

�

)]
= T1 + ��T2 (say).9

Now T1 equals the difference between the EMCR of a non-optimal rule under � (since it uses the threshold d ′) and
the EMCR of the optimal Bayes rule under �. Therefore, T1 �0. Next T2 > 0 because d ′ < � when �′ < 1

2 and hence11
�1 − d ′ > d ′ − �2. Therefore, EMCR′ − EMCR > 0 as was to be shown. �
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Fig. 2. EMCR of the K-means algorithm and the MM method for mixtures of N(1, 1) and N(3, 1) distributions.

Fig. 2 shows the EMCR of the MM method as a function of � for mixtures of N(1, 1) and N(3, 1) distributions. For1
comparison purposes the EMCR of the K-means algorithm (studied analytically in the following subsection) is also
plotted in the same figure. We see that the two EMCR curves vary in opposite ways with equality at � = 1

2 ; obviously,3
the EMCR of the Bayes rule is lower for all other � values.

4.2. EMCR of the K-means algorithm5

For the K-means algorithm, the threshold c divides the data into two clusters such that the means of the two clusters
are equidistant from the threshold. Asymptotically, the cluster means are weighted combinations of the conditional7
means of the data from each normal distribution, conditional on the data falling into the appropriate cluster. To evaluate
these conditional means we use the following lemma.9

Lemma 1. Let X ∼ N(�, �2). Then


(c) = E�,�(X|X�c) = � − ��((c − �)/�)

	((c − �)/�)
and �(c) = E�,�(X|X > c) = � + ��((� − c)/�)

	((� − c)/�)
, (4.3)11

where �(·) and 	(·) are the standard normal p.d.f. and c.d.f., respectively.

Proof. The p.d.f. of the N(�, �2) distribution equals (1/�)�((x − �)/�). So13


(c) = 1

	((c − �)/�)

∫ c

−∞
x

(
1

�

)
�

(
x − �

�

)
dx

= 1

	((c − �)/�)

∫ c

−∞
[� + (x − �)]

(
1

�

)
�

(
x − �

�

)
dx

= � + 1

	((c − �)/�)

∫ c

−∞
(x − �)

(
1

�

)
�

(
x − �

�

)
dx.

Make a change of variables y = �((x − �)/�). Then (x − �)�((x − �)/�) dx = −�2 dy. The expression for 
(c) in15
(4.3) follows by making this substitution. The expression for �(c) is derived in the same way. �
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Let �̃1(c) and �̃2(c) denote the population means of the clusters formed of observations that are less than or greater1
than a specified threshold c, respectively. Then

�̃1(c) = � Pr�1,�(X�c)E�1,�(X|X�c) + (1 − �) Pr�2,�(X�c)E�2,�(X|X�c)

� Pr�1,�(X�c) + (1 − �) Pr�2,�(X�c)

= 
1(c)p�(c) + 
2(c)[1 − p�(c)], (4.4)3

where

p�(c) = �	((c − �1)/�)

�	((c − �1)/�) + (1 − �)	((c − �2)/�)
, (4.5)5

and 
1(c) and 
2(c) are the values of 
(c) from (4.3) when � = �1 and �2, respectively. Similarly,

�̃2(c) = �1(c)q�(c) + �2(c)[1 − q�(c)], (4.6)7

where

q�(c) = �	((�1 − c)/�)

�	((�1 − c)/�) + (1 − �)	((�2 − c)/�)
, (4.7)9

and �1(c) and �2(c) are the values of �(c) from (4.3) when � = �1 and �2, respectively. Then c solves the equation

f�(c) = �̃1(c) + �̃2(c) − 2c = 0. (4.8)11

Remark 1. Note that although the K-means algorithm does not explicitly take into account the prior� and the underlying
probability model, the asymptotic threshold c used by it depends on these quantities through the above equation.13

To prove the existence, uniqueness and monotonicity of the solution c to the above equation, we need the following
two lemmas.15

Lemma 2. The function f (x) = �(x)/	(x) is decreasing in x ∀x ∈ (−∞, ∞).

Proof. The derivative of f (x) equals17

f ′(x) = −x�(x)	(x) − �2(x)

	2(x)
.

Obviously, f ′(x) < 0 for x > 0. For x < 0, put x=−y where y > 0. Then the numerator of f ′(x) equals �(y)[y	(−y)−19
�(y)], which is < 0 since Mills’ ratio r(y)=	(−y)/�(y) < 1/y; see Johnson and Kotz (1970, p. 279). Hence f ′(x) < 0
∀x ∈ (−∞, ∞). �21

Corollary 1. For �1 < �2, we have �1 − 
1(c) < �2 − 
2(c).

Proof. The inequality is equivalent to23

�((c − �1)/�)

	((c − �1)/�)
<

�((c − �2)/�)

	((c − �2)/�)
,

which follows by putting x = (c − �)/�, and noting that f (x) is decreasing in x and hence increasing in �. �25

Lemma 3. The function g(x) = x + �(x)/	(x) is increasing in x ∀x ∈ (−∞, ∞).

Proof. The derivative of g(x) is27

g′(x) = 1 − x�(x)	(x) + �2(x)

	2(x)

= 	2(x) − x�(x)	(x) − �2(x)

	2(x)
.
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So we only need to prove that the numerator of this derivative, h(x)=	2(x)−x�(x)	(x)−�2(x), is positive. Taking1
the derivative of h(x), we get

h′(x) = 2	(x)�(x) − �(x)	(x) + x2�(x)	(x) − x�2(x) + 2x�2(x)

= 	(x)�(x) + x2�(x)	(x) + x�2(x).3

So h′(x) > 0 ∀x > 0.
For x < 0, put x = −y where y > 0. Then h′(x) = �(y)[(1 + y2)	(−y) − y�(y)]. It follows that h′(x) > 0∀x < 05

since Mills’ ratio r(y) = 	(−y)/�(y) > y/(1 + y2); see Johnson and Kotz (1970, p. 279). To complete the proof we
need to show that7

lim
x→−∞ h(x) = lim

x→−∞ x2	2(x)

[
1

x2
− �(x)

x	(x)
−
(

�(x)

x	(x)

)2
]

�0,

which together with the fact that h′(x) > 0 ∀x implies that h(x) > 0 ∀x. Again putting x = −y, we see that the above9
inequality is equivalent to

lim
y→∞

[
1

y2
+ 1

yr(y)
−
(

1

yr(y)

)2
]

�0.
11

But it is well known that limy→∞yr(y)=1. Hence the above limit equals 0. This completes the proof of g′(x) > 0 ∀x ∈
(−∞, ∞). �13

Corollary 2. The function 
(c)=E�,�(X|X�c) is increasing in � for all c. Hence for �1 < �2, we have 
1(c) < 
2(c)

and �1(c) < �2(c).15

Proof. Write


(c) = c − �

[(
c − �

�

)
+ �((c − �)/�)

	((c − �)/�)

]
.17

Now put x = ((c − �)/�). Then 
(c) is decreasing in x and hence increasing in �. The proof of �1(c) < �2(c) is
analogous. �19

We are now ready to state and prove the following two propositions regarding the existence, uniqueness and mono-
tonicity of c.21

Proposition 2. For �1 < �2 and � ∈ [0, 1], there exists a solution c to Eq. (4.8).

Proof. We will show that f�(�1) > 0 and f�(�2) < 0, where f�(·) is defined in (4.8). Then by the continuity of f�(·)23
and the intermediate value theorem, the existence of the solution to f�(c)=0 for some c ∈ [�1, �2] will be established.

Write25

f�(�1) = �̃1(�1) + �̃2(�1) − 2�1

= [
1(�1) − �1]p�(�1) + [
2(�1) − �1][1 − p�(�1)]
+ [�1(�1) − �1]q�(�1) + [�2(�1) − �1][1 − q�(�1)]

= − �
√

2/�(0.5�) + �[−� + �(−�)/	(−�)](1 − �)	(−�)

0.5� + (1 − �)	(−�)

+ �
√

2/�(0.5�) + �[� + �(�)/	(�)](1 − �)	(�)

0.5� + (1 − �)	(�)

> − �
√

2/�(0.5�) + �[� + �(�)/	(�)](1 − �)	(−�)

0.5� + (1 − �)	(−�)

+ �
√

2/�(0.5�) + �[� + �(�)/	(�)](1 − �)	(�)

0.5� + (1 − �)	(�)
, (4.9)
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where we have used the inequality1

� + �(�)

	(�)
> − � + �(−�)

	(−�)
,

which follows from Lemma 3. Now put3

s =
√

2

�
, t = � + �(�)

	(�)
, u = 	(−�) and v = 	(�).

Then simple algebra shows that the lower bound on f�(�1) obtained in (4.9) is strictly > 0 iff (t − s)(v − u) > 0. This5
inequality holds because t = g(�) > g(0) = s from Lemma 3 and v > u. Similarly we can show that f�(�2) < 0. This
proves the existence of c ∈ [�1, �2] such that f�(c) = 0. �7

Proposition 3. The solution c to (4.8) is decreasing, skew-symmetric and one-to-one function of �. Hence c is unique
with c = �2 for � = 0, c = �1 for � = 1 and c = � for � = 1

2 .9

Proof. Write f�(c) as

f�(c) = 
1(c)p�(c) + 
2(c)[1 − p�(c)] + �1(c)q�(c) + �2(c)[1 − q�(c)] − 2c. (4.10)11

Note that p�(c), q�(c) are increasing in �. Furthermore, from the corollary to Lemma 3 we have 
1(c) < 
2(c) and
�1(c) < �2(c). Since, as � increases, more weight is put on smaller quantities, 
1(c) and �1(c), and less weight on13
larger quantities, 
2(c) and �2(c), it follows that f�(c) decreases in �. Therefore, if c is the root of Eq. (4.8), then
f�′(c) < 0 for �′ > �. But in Proposition 2 we have shown that f�′(�1) > 0. By the intermediate value theorem, there15
exists c′ ∈ (�1, c) such that f�′(c′) = 0, i.e., c′ < c is the root of Eq. (4.8) for �′ > �. Hence the solution c to f�(c) = 0
is decreasing in �.17

To show that for any fixed � ∈ [0, 1] the solution c is unique, first note that for � = 0 and � = 1 we have unique
solutions c = �2 and c = �1, respectively. For example, for � = 0, we have p0(c) = q0(c) = 0, and the equation for c is19

f0(c) = �̃1(c) + �̃2(c) − 2c

= 
2(c) + �2(c) − 2c

= 2�2 − ��

(
c − �2

�

)[
1

	((c − �2)/�)
− 1

	((�2 − c)/�)

]
− 2c = 0.

This last equation can be rewritten as g(�)= g(−�) where the function g(·) is defined in Lemma 3 and �= (�2 − c)/�.21
But, as shown in that lemma, g(·) is a strictly increasing function and so the only solution to the above equation is
� = 0, i.e., c = �2. Similarly, c = �1 is the unique solution for � = 1. Now suppose that for any other � ∈ [0, 1] there23
are two distinct solutions, c1 and c2, such that f�(c1) = f�(c2) = 0. Then it must be the case that for some c there
are two distinct �1 and �2 such that f�1

(c) = f�2
(c) = 0, which contradicts the just proven fact that f�(c) is a strictly25

decreasing function of �. Therefore, the solution c is unique for all � ∈ [0, 1]. For � = 1
2 , by symmetry we obtain c = �

as the unique solution.27
Finally, we will show the skew-symmetric property of c. Consider two priors � and �′ = 1 − �, and let c and c′ be the

corresponding asymptotic threshold values of the K-means algorithm. Thus, c satisfies the equation f�(c) = 0. We will29
show by direct substitution that c′ = (�1 + �2) − c = 2� − c satisfies the equation f�′(c′) = 0. We can readily check
the following relations:31


1(c) = 2� − �2(c
′), 
2(c) = 2� − �1(c

′), �1(c) = 2� − 
2(c
′), �2(c) = 2� − 
1(c

′)

and33

p�(c) = 1 − q�′(c′), q�(c) = 1 − p�′(c′).
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Substituting these expressions in f�(c) = 0 we get1

0 = f�(c) = [2� − �2(c
′)][1 − q�′(c′)] + [2� − �1(c

′)]q�′(c′)
+ [2� − 
2(c

′)][1 − p�′(c′)] + [2� − 
1(c
′)]p�′(c′) − 2(�1 + �2) + 2c′

= − 
1(c
′)p�′(c′) − 
2(c

′)[1 − p�′(c′)] − �1(c
′)q�′(c′) − �2(c

′)[1 − q�′(c′)] + 2c′

= − f�′(c′),

which shows that f�′(c′) = 0. �3

Remark 2. The behavior of c as a function of � is opposite to that of the asymptotic threshold d of the MM method.
Fig. 1 shows c as a function of � for mixtures of N(1, 1) and N(3, 1) distributions.5

The EMCR of the K-means algorithm is given by expression (4.2) with d replaced by c. Since c = �2 for � = 0 and
c = �1 for � = 1, it follows that EMCR = 0.5 for � = 0 and � = 1. For � = 1

2 , the EMCR values of the Bayes rule and7
the K-means algorithm are equal to 	(−�/2) since c = d =�. For all other � ∈ [0, 1], the EMCR of the MM method is
smaller because of the optimality property of the associated Bayes rule referred to earlier. The following proposition9
shows that the EMCR of the K-means algorithm is a symmetric function of � as is the EMCR of the MM method.

Proposition 4. The EMCR of the K-means algorithm is symmetric around � = 1
2 and is decreasing in � for � < 1

2 and11
increasing in � for � > 1

2 .

Proof. The symmetry of the EMCR of the K-means algorithm follows from the skew-symmetry of c in the same13
manner as the symmetry of the EMCR of the MM method follows from the skew-symmetry of d. Now we will show
that EMCR is decreasing in � for � < 1

2 . Let EMCR and EMCR′ correspond to � and �′ < �, respectively, where � < 1
215

and �′ = � − ��. Then

EMCR′ = �′	
(

�1 − c′

�

)
+ (1 − �′)	

(
c′ − �2

�

)
= �	

(
�1 − c′

�

)
+ (1 − �)	

(
c′ − �2

�

)
+ ��

[
	

(
c′ − �2

�

)
− 	

(
�1 − c′

�

)]
> �	

(
�1 − c′

�

)
+ (1 − �)	

(
c′ − �2

�

)
17

since

	

(
c′ − �2

�

)
> 	

(
�1 − c′

�

)
,19

which follows from the fact that c′ > � for �′ < 1
2 . Hence, to prove that EMCR′ > EMCR, it suffices to show that

�	

(
�1 − c′

�

)
+ (1 − �)	

(
c′ − �2

�

)
> �	

(
�1 − c

�

)
+ (1 − �)	

(
c − �2

�

)
⇐⇒ (1 − �)

[
	

(
c′ − �2

�

)
− 	

(
c − �2

�

)]
> �

[
	

(
�1 − c

�

)
− 	

(
�1 − c′

�

)]
⇐⇒ (1 − �)

∫ c′

c

��2,�(x) dx > �
∫ c′

c

��1,�(x) dx,21

where ��,�(x) is the p.d.f. of the N(�, �2) distribution. The last step follows because � is the point of intersection of

��1,�(x) and ��2,�(x), and since � < 1
2 and c′, c > �, for c�x�c′ we have (1 − �)��2,�(x) > ���1,�(x). �23

Remark 3. The monotone behavior of the EMCR of the K-means algorithm as a function of � is opposite to that of the
EMCR of the MM method. Fig. 2 shows the EMCR of the K-means algorithm as a function of � for mixtures of N(1, 1)25
and N(3, 1) distributions. It should be noted that for � close to 0 or 1, essentially we have a single cluster. The MM
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can deal with this problem because it estimates � in a continuous manner. On the other hand, the K-means algorithm1
is forced to divide the data set into two clusters even if there are no observations from the cluster having the smaller
value � or 1 − �. In practice, the user would generally perform a test of K = 1 vs. K = 2, which would improve the3
performance of the K-means algorithm. Therefore, the discrepancy in the EMCR functions of the two methods may
not be as large in practice as shown in Fig. 2, especially for �-values in the extreme.5

5. Univariate normal heteroscedastic mixtures with two clusters

Denote the two cluster distributions by N(�1, �
2
1) and N(�2, �

2
2) and assume that �1 < �2 and �2

1 < �2
2 without loss7

of generality. In this section we carry out a comparison between the EMCRs of the MM method and the K-means
algorithm paralleling that for the homoscedastic case.9

5.1. EMCR of the MM method

In this case, asymptotically, the MM method clustering rule is equivalent to the Bayes rule (3.8):11

R(x) = C1 ⇐⇒ 1

2

[(
x − �1

�1

)2

−
(

x − �2

�2

)2
]

� ln

(
�1�2

�2�1

)
, (5.1)

where �1 = � and �2 = 1 − �.13
Consider the quadratic equation obtained by making the above inequality an equality. For convenience, we will refer

to this quadratic equation by the same equation number. If there is no real root or a single root of this equation, then15
rule (5.1) is R(x) = C2 for all x. The quadratic equation has two distinct real roots, say d1 < d2, if its discriminant is
> 0, i.e., if17 (

�1

�2
1

− �2

�2
2

)2

−
(

1

�2
1

− 1

�2
2

)[
�2

1

�2
1

− �2
2

�2
2

− 2 ln

(
�1�2

�2�1

)]
> 0.

Denoting19

k = �2
1

�2
1

− �2
2

�2
2

−
(

1

�2
1

− 1

�2
2

)−1(
�1

�2
1

− �2

�2
2

)2

,

we see that the above condition is equivalent to21

� > �∗ = �1 exp(k/2)

�1 exp(k/2) + �2
. (5.2)

It is easy to check that k < 0 and hence23

�∗ = �1 exp(k/2)

�1 exp(k/2) + �2
<

�1

�1 + �2
= �∗∗.

If � > �∗ then rule (5.1) is R(x) = C1 if d1 �x�d2; otherwise R(x) = C2. The two real roots are the points of25
intersection of the prior-weighted p.d.f.s, ���1,�1

(x) and (1 − �)��2,�2
(x). Fig. 3 depicts this graphically where the

prior-weighted p.d.f. curves are shown by dotted lines for � ∈ (�∗, �∗∗). When � = �∗∗, we have27

d1 = �1�2 − �2�1

�2 − �1
and d2 = �1�2 + �2�1

�2 + �1
. (5.3)

These points of intersection are shown in the same figure with the prior-weighted p.d.f. curves for �= �∗∗ being shown29
by solid lines.

It is clear that as � decreases and 1 − � increases, d1 increases and d2 decreases. In particular, if � < �∗∗ then31

d1 >
�1�2 − �2�1

�2 − �1
and d2 <

�1�2 + �2�1

�2 + �1
. (5.4)
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Fig. 3. Thresholds (d1, d2) and (d ′
1, d ′

2) of the MM method for mixtures of N(1, 1) and N(4, 4) distributions for two priors, �=�∗∗ and �=�′ < �∗∗.

When � = �∗, d1 and d2 are equal. When � decreases further, real roots d1 and d2 do not exist since the two prior-1
weighted p.d.f. curves do not intersect or equivalently the quadratic curve in (5.1) lies completely in the upper half of
the coordinate plane. As � increases for � > �∗, d1 decreases and d2 increases. When � = 1, we have d1 = −∞ and3
d2 = ∞ (so that R(x) = C1∀x).

Fig. 4 shows how d1 and d2 change with � for mixtures of N(1, 1) and N(4, 4) distributions. In this case �∗ and �∗∗5
can be calculated to be �∗=0.1004, �∗∗=0.3333. The K-means algorithm uses a single threshold c (studied analytically
in the following subsection) which is also plotted in the same figure for comparison purposes.7

For ���∗, since R(x) = C2∀x, the EMCR of the MM method equals �. For � > �∗, this EMCR is given by

EMCR = � Pr�1,�1{(X < d1) ∪ (X > d2)} + (1 − �) Pr�2,�2{d1 �X�d2}
= �

[
	

(
d1 − �1

�1

)
+ 	

(
�1 − d2

�1

)]
+ (1 − �)

[
	

(
d2 − �2

�2

)
− 	

(
d1 − �2

�2

)]
.9

From the above we can conclude that EMCR = 0 for � = 0 and 1 (since d1 = −∞ and d2 = ∞ in that case). The
following proposition gives a more detailed characterization of the EMCR.11

Proposition 5. The EMCR of the MM method increases in � for � < �∗∗nd reaches a maximum at � > �∗∗ where �
solves the equation13

	

(
d1 − �1

�1

)
+ 	

(
�1 − d2

�1

)
− 	

(
d2 − �2

�2

)
+ 	

(
d1 − �2

�2

)
= 0; (5.5)

here d1 and d2 are the roots of the quadratic equation (5.1) and hence depend on �.15

Proof. As shown before, for ���∗, EMCR = �, which increases linearly in ���∗. For � ∈ (�∗, �∗∗), the proof of
monotonicity is similar to that of Proposition 1. Consider the Bayes rules for � and �′ = � + �� < �∗∗ where �� > 0.17
Denote by d ′

1 and d ′
2 the threshold values for �′. Then EMCR′ − EMCR can be decomposed into two terms as in

Proposition 1. The first term is the difference in the EMCR of a non-optimal rule under � that uses the thresholds19
d ′

1 and d ′
2, and the EMCR of the optimal rule under � that uses the thresholds d1 and d2; hence this term is positive.21
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Fig. 4. Asymptotic thresholds c of the K-means algorithm and (d1, d2) of the MM method for mixtures of N(1, 1) and N(4, 4) distributions (For
�< �∗, (d1, d2) do not exist).

The second term equals1

��

[
	

(
d ′

1 − �1

�1

)
+ 	

(
�1 − d ′

2

�1

)
− 	

(
d ′

2 − �2

�2

)
+ 	

(
d ′

1 − �2

�2

)]
.

This term is positive since d ′
2 < (�1�2 + �2�1)(�2 + �1) if �, �′ < �∗∗ as seen from (5.4). Hence3

	

(
�1 − d ′

2

�1

)
− 	

(
d ′

2 − �2

�2

)
> 0.

Since, as noted before, d1 decreases and d2 increases with increasing �, the left-hand side of (5.5), regarded as a5
function of � and denoted by g(�), is a decreasing function. It is easy to show using the (d1, d2) values from (5.3) for
� = �∗∗ that g(�∗∗) = 2	((�1 − �2)/(�2 − �1)) > 0 and g(1) = −1. Therefore, there exists � ∈ (�∗∗, 1) such that7
g(�) > 0 for � < �, g(�) < 0 for � > � and g(�)= 0. Now consider � and �′ = �−�� such that �, �′ > �. The difference
between the corresponding EMCR values is then9

EMCR′ − EMCR =
{
(� − ��)

[
	

(
d ′

1 − �1

�1

)
+ 	

(
�1 − d ′

2

�1

)]
+ (1 − � + ��)

[
	

(
d ′

2 − �2

�2

)
− 	

(
d ′

1 − �2

�2

)]}
−
{
�

[
	

(
d1 − �1

�1

)
+ 	

(
�1 − d2

�1

)]
+ (1 − �)

[
	

(
d2 − �2

�2

)
− 	

(
d1 − �2

�2

)]}
� − ��

[
	

(
d ′

1 − �1

�1

)
+ 	

(
�1 − d ′

2

�1

)
− 	

(
d ′

2 − �2

�2

)
+ 	

(
d ′

1 − �2

�2

)]
� − ��g(�′)�0,

Please cite this article as: Qiu, D., Tamhane, A.C., A comparative study of the K-means algorithm and the normal mixture model for clustering:....
J. Statist. Plann. Inference (2007), doi: 10.1016/j.jspi.2007.03.045

http://dx.doi.org/10.1016/j.jspi.2007.03.045


UNCORRECTED P
ROOF

JSPI3256
ARTICLE IN PRESS

D. Qiu, A.C. Tamhane / Journal of Statistical Planning and Inference ( ) – 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

η

E
M

C
R

MM Method

K- means Algorithm

η η
_

*

Fig. 5. EMCR of the K-means algorithm and the MM method for mixtures of N(1, 1) and N(4, 4) distributions.

since g(�′)�0. In the second to last step above, the inequality is obtained by dropping the term1 {
�

[
	

(
d ′

1 − �1

�1

)
+ 	

(
�1 − d ′

2

�1

)]
+ (1 − �)

[
	

(
d ′

2 − �2

�2

)
− 	

(
d ′

1 − �2

�2

)]}
−
{
�

[
	

(
d1 − �1

�1

)
+ 	

(
�1 − d2

�1

)]
+ (1 − �)

[
	

(
d2 − �2

�2

)
− 	

(
d1 − �2

�2

)]}
,

which is positive because it is the difference between the EMCR of a non-optimal rule that uses d ′
1 and d ′

2 under the3
prior � and the EMCR of the optimal Bayes rule that uses d1 and d2 under the prior �. Therefore, we have shown that
for � > �, the EMCR decreases. Similarly, it can be shown that for � < �, the EMCR increases. Therefore, the EMCR5
reaches a maximum when � = �, which is the solution to Eq. (5.5). �

Fig. 5 shows a plot of the EMCR as a function of � for the MM method for mixtures of N(1, 1) and N(3, 4)7
distributions. The point of maximum EMCR obtained by solving Eq. (5.5) equals � = 0.3358, which is slightly greater
than �∗∗. The EMCR of the K-means algorithm (discussed in the following subsection) is also plotted in the same figure9
for comparison purposes.

5.2. EMCR of the K-means algorithm11

The K-means algorithm does not distinguish between homoscedasticity and heteroscedasticity, and uses a single
threshold c to assign observations to two clusters. Therefore, c is determined by the same Eq. (4.8), where now the13
quantities 
i (c), �i (c), p�(c) and q�(c) depend on both �i and �i (i = 1, 2) in an obvious way.

Proposition 6. For �1 < �2 and �1 < �2, the solution c to (4.8) is a decreasing function of �. Furthermore, c > � for15
� = 1

2 .

Proof. It is straightforward to see that the properties of the f�(·) function shown in Propositions 2 and 3 for the17
homoscedastic case extend to its modification for the heteroscedastic case. In particular, f�(�1) > 0, f�(�2) < 0 and
f�(x) is decreasing in �. From this it follows that c is a decreasing function of �; the proof is similar to that of Proposition19
3.
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To show the second part of the proposition, we will show that f1/2(�) > 0, so that if f1/2(c) = 0 then c > �. Denote1

 = (�2 − �1)/2 and note that

� − 
1(�) = 
 + �1�(
/�1)

	(
/�1)
, � − 
2(�) = −
 + �2�(−
/�2)

	(−
/�2)
,3

�1(�) − � = −
 + �1�(−
/�1)

	(−
/�1)
, �2(�) − � = 
 + �2�(
/�2)

	(
/�2)
.

Substituting these values in the expression for f1/2(�) and recalling that � = 1 − � get cancelled from the numerator5
and denominator, we get

f1/2(�) = − [� − 
1(�)]	(
/�1) + [� − 
2(�)]	(−
/�2)

	(
/�1) + 	(−
/�2)

+ [�1(�) − �]	(−
/�1) + [�2(�) − �]	(
/�2)

	(−
/�1) + 	(
/�2)

= − �	(
/�1) + �1�(
/�1) − �	(−
/�2) + �2�(−
/�2)

	(
/�1) + 	(−
/�2)

+ −�	(−
/�1) + �1�(−
/�1) + �	(
/�2) + �2�(
/�2)

	(−
/�1) + 	(
/�2)
.7

Now, the numerators of the two terms are equal since �(x) = �(−x) and 	(
/�1) − 	(−
/�2) = −	(−
/�1) +
	(
/�2). Hence f1/2(�) > 0 if 	(−
/�1) + 	(
/�2) < 	(
/�1) + 	(−
/�2), which can be easily checked to be9
true. This completes the proof. �

Remark 4. Fig. 4 shows a plot of c as a function of � for mixtures of N(1, 1) and N(4, 4) distributions. From this figure11
we see that c and d2 are equal for some �. This value of � can be found by solving Eqs. (4.8) and (5.1) simultaneously
under the constraint that c = d2. The common value is found to be 2.67667 at � = 0.62095. At this value, the EMCR13
values of the two methods are nearly (but not exactly) equal as seen from Fig. 5. The two EMCR values are 0.125291
for the MM method and 0.125377 for the K-means algorithm.15

Proposition 7. For �1 < �2 and �1 < �2, the EMCR of the K-means algorithm is decreasing in � for � < �∗∗.

Proof. The proof is similar to that of Proposition 4. Let EMCR and EMCR′ be the expected MCR values for the17
K-means algorithm corresponding to the priors � < �∗∗ and �′ = � − �� < �. Then using the fact that c′ > � > m =
(�1�2 + �2�1)/(�1 + �2) and hence19

	

(
c′ − �2

�2

)
> 	

(
�1 − c′

�1

)
,

it follows that21

EMCR′ > �	

(
�1 − c′

�1

)
+ (1 − �)	

(
c′ − �2

�2

)
.

Then, as before, to prove that EMCR′ > EMCR it suffices to show that23

(1 − �)

∫ c′

c

��2,�2
(x) dx > �

∫ c′

c

��1,�1
(x) dx.

This is true because for � < �∗∗, the point of intersection of ���1,�1
(x) and (1 − �)��2,�2

(x) is less than m as seen25

from (5.4). Since � < �∗∗ < 1
2 and c′, c > m, for c�x�c′ we have (1 − �)��2,�2

(x) > ���1,�1
(x). �

Remark 5. As Fig. 5 shows, the EMCR of the K-means algorithm continues to decrease past � = 0.3333 achieving a27
minimum at � = 0.7628 (determined numerically) and then increases rather steeply to 0.5 for � = 1. The EMCR of the
K-means algorithm is plotted in Fig. 5 as noted earlier.29
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6. Simulation study1

In this section we compare the performances of the K-means algorithm and the MM method via simulation. The
study is restricted K = 2 clusters. The EMCR of the Bayes rule (the “gold standard”) is used as a benchmark for3
comparison. (Note that because of the finite sample sizes used in the simulation study, the MCR of the MM method
will be generally higher than that of the Bayes rule. The two converge asymptotically.) The empirical MCR of any rule5
is given by the observed proportion of misclassifications.

6.1. Univariate normal, homoscedastic mixture with K = 2 clusters7

A mixture of two normal distributions with �1 =1, �2 =3 and �1 =�2 =1, was simulated. Since the misclassification
rates are symmetric about � = 1

2 , we varied � only from 0.10 to 0.50. Also we varied the sample sizes from 50 to9
50,000. Because the empirical MCR has a larger variance when the sample size is small, we replicated small samples
until their overall total equaled 50,000, and computed the average misclassification rates. Thus, the simulation run for11
N = 50, 000 was replicated once, while that for N = 50 was replicated 1000 times.

For the EM algorithm, we set the initial estimates of the cluster means equal to 0.5 and 4. The common initial estimate13
of the cluster variances was set equal to the overall sample variance. Initial estimate of � was set equal to 0.50. The
simulation results are shown in Table 1.15

The following conclusions emerge from these simulations:

1. The MCR of the Bayes rule increases as � increases from 0.10 to 0.50 as shown in Proposition 1.17
2. The performance of the K-means algorithm is significantly worse than that of the MM method when � is away from

0.50, but gets closer as � gets closer to 0.50.19
3. The sample size has a significant effect on the MCR of the MM method. Generally, the MCR decreases as the

sample size increases because more accurate estimates are obtained using the EM algorithm with larger samples.21

Table 1
Simulated misclassification rates of the MM method and the K-means algorithm for the univariate homoscedastic case (K = 2, �1 = 1, �2 = 3,
�1 = �2 = 1)

� EMCR of Bayes rule N Empirical MCR

MM method K-means algorithm

0.10 0.0701 50 0.1299 0.3255
500 0.0800 0.3415

5000 0.0698 0.3552
50 000 0.0710 0.3352

0.20 0.1121 50 0.1588 0.2415
500 0.1202 0.2452

5000 0.1133 0.2327
50 000 0.1144 0.2351

0.30 0.1387 50 0.1851 0.1861
500 0.1422 0.1872

5000 0.1391 0.1865
50 000 0.1381 0.1869

0.40 0.1538 50 0.1984 0.1686
500 0.1601 0.1640

5000 0.1561 0.1636
50 000 0.1537 0.1644

0.50 0.1587 50 0.2077 0.1626
500 0.1658 0.1622

5000 0.1581 0.1577
50 000 0.1589 0.1570
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Table 2
Simulated misclassification rates of the MM method and the K-means algorithms for the univariate heteroscedastic case (K = 2, �1 = 1, �1 = 1,
�2 = 4, �2 = 2)

�1 EMCR of Bayes rule N Empirical MCR

MM method K-means algorithm

0.10 0.1000 50 0.1789 0.3830
500 0.1449 0.3881

5000 0.1039 0.3891
50 000 0.1003 0.3833

0.20 0.1450 50 0.2082 0.3075
500 0.1682 0.3129

5000 0.1491 0.3097
50 000 0.1451 0.3075

0.30 0.1575 50 0.2288 0.2576
500 0.1778 0.2568

5000 0.1606 0.2587
50 000 0.1563 0.2571

0.40 0.1561 50 0.2202 0.2105
500 0.1701 0.2115

5000 0.1584 0.2044
50 000 0.1555 0.2131

0.50 0.1461 50 0.2057 0.1712
500 0.1599 0.1734

5000 0.1452 0.1705
50 000 0.1462 0.1709

0.60 0.1295 50 0.1845 0.1402
500 0.1356 0.1380

5000 0.1318 0.1364
50 000 0.1299 0.1362

0.70 0.1073 50 0.1513 0.1161
500 0.1139 0.1096

5000 0.1097 0.1096
50 000 0.1069 0.1083

0.80 0.0795 50 0.1241 0.1180
500 0.0840 0.0893

5000 0.0799 0.0841
50 000 0.0801 0.0836

0.90 0.0456 50 0.0917 0.2025
500 0.0488 0.1619

5000 0.0456 0.1472
50 000 0.0450 0.1519

The MCR of the K-means algorithm is relatively unaffected by the sample size since it does not involve estimation1
of any parameters. When � is close to 0.5, the MCR of the MM method for small sample sizes can be sometimes
higher than that of the K-means algorithm because of poor parameter estimates.3

6.2. Univariate normal, heteroscedastic mixtures

Mixtures of two normal distributions with �1 = 1, �1 = 1 and �2 = 4, �2 = 2, were simulated. Because of unequal5
variances, the misclassification rates are not symmetric about � = 1

2 . Therefore, we varied � over its entire range from
0.10 to 0.90. We also varied the sample sizes from 50 to 50,000 as explained before.7
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For the EM algorithm we set the initial estimates of the cluster means equal to 0.5 and 4.5, and initial estimates of1
the variances equal to 2.5 and 0.5, respectively. Initial � was set equal to 0.50. The results are shown in Table 2.

1. Many of the conclusions are qualitatively similar to those obtained in the univariate, homoscedastic case. For3
example, the performance of the K-means algorithm is relatively unaffected by the sample size, but that of the MM
method is generally affected with higher empirical MCR values for small sample sizes that approach the EMCR of5
the Bayes rule as the sample size increases. The performance of the K-means algorithm gets progressively better
as the mixing proportions become more balanced. The K-means algorithm beats the MM method in terms of the7
empirical MCR only when the sample size is small and � does not take extreme values (e.g., for N = 50, � is
between 0.40 and 0.80 and for N = 500, � = 0.7). However, recall the caution expressed in Remark 3.9

2. The EMCR of the Bayes rule, although not symmetric about � = 1
2 , shows a similar behavior, increasing with �

up to � = 0.3358 and then decreasing. The empirical MCR of the K-means algorithm, on the other hand, decreases11
until about � = 0.8 (more accurately until � = 0.7628) and then increases.

Finally, we note that all simulation results are in agreement with the analytical results derived in Sections 4 and 5.13

7. Discussion and conclusions

In this paper we have analyzed the univariate case in thorough detail. The results show that the MM method is a15
preferred method in many cases for clustering since it yields smaller misclassification rates. Exceptions are those cases
where the prior probabilities of the two clusters are not too different and the sample sizes are small. The EM algorithm17
is computationally more intensive and requires larger sample sizes to obtain accurate estimates of parameters. For
multivariate data there are many more parameters that need to be estimated because of the m(m+ 1)/2 elements of the19
covariance matrix for each cluster. Therefore, the computational burden and the requirement of sample sizes increases
with the dimension of the data vectors. However, the greater achieved accuracy is a worthwhile payoff especially in21
data mining applications where large sample sizes are prevalent and computing time is not a major restriction.

Analytical results for the multivariate case are much more difficult to obtain. However, for the homoscedastic case,23
the clustering problem can be shown to reduce to the univariate problem because the assignment rule is linear as seen
in (3.8). We plan to study this problem in a future paper.25
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